C++ isfun - Part Three
at Turbine/Warner Bros.!

Let’s go over homework!

* Hope you enjoyed the homework, you did,
right? Right, guys?

e Cool.

Homework! :?

* Notes on system(“PAUSE”) and endl vs.

cout << first <<'\n';

// cout << first << endl;
system("PAUSE");

return 0;

cout << first <<'\n';

// cout << first << endl;
// system("PAUSE");
return 0;

// cout << first <<'\n';
cout << first << endl;
system("PAUSE");

return 0;

S ./PartDeux.exe

Enter two words:

Big Apple

Press any key to continue.. ..

Big Ripe Apple

S ./PartDeux.exe
Enter two words:
Big Apple

Big Ripe Apple

S ./PartDeux.exe

Enter two words:

Big Apple

Big Ripe Apple

Press any key to continue.. . .

ll\n”

template <class Ch, class Tr>

basic_ostream<Ch, Tr>& endl (basic_ostream<Ch, Tr>&); // put '\n" and flush
template <class Ch, class Tr>

basic_ostream<Ch, Tr>& ends (basic_ostream<Ch, Tr>%&); // put '\0" and flush
template <class Ch, class Tr>

basic_ostream<Ch, Tr>& flush (basic_ostream<Ch, Tr>&); // flushstream

template <class Ch, class Tr>
basic_istream<Ch, Tr>& ws(basic_istream<Ch, Tr>&) ; // eat whitespace

As you may recall, “Homework for next

1)

2)

3)

4)

Monday (pick 2, minimum)”

Werite a program that uses the modulus operator to determine if a
number is odd or even. If the number is evenly divisible by 2, it is
an even number. A remainder indicates it is odd. The number can
be input by the user or read from a file.

Write an if statement that performs the following logic: if the
variable sales is greater than 50,000, then assign 0.25 to the
commissionRate variable, and assign 250 to the bonus variable.
Accept two strings as input at the prompt/command line, such as
“Big” and “Apple.” Join or concatenate the two words with a third
word, such as “Ripe” and print the three words together with the
third word the middle, “Big Ripe Apple”.

Accept 5 integers on the command line, either all at once or
separately. Save these to an array, vector, or list. Print the
integers in the range 2 through 4, leaving off the first and the last.
Bonus: Ask for the size of the array to be used, so it can be 5, 6, or
7 etc. Double Bonus: Allow a variable number of input numbers,

stop input using a stop character or command the letter “s” say,
then print all the input integers leaving off the first and the last.

1) Write a program that uses the modulus operator to determine if
a number is odd or even. If the number is evenly divisible by 2, it is
an even number. A remainder indicates it is odd. The number can
be input by the user or read from a file.

string oddOrEven(int number)

{
string answer = "";
if(number % 2 == 0) {
answer = "even";
}
else {
answer = "odd";
}
return answer;
}
void questionOne()
{
int number = 0;
cout << "Please enter your number. I will determine if it is odd or even." << endl;
cin >> number;
string answer = oddOrEven(number);
cout << "The number you entered is: " << answer << endl;
}
// int main
if(questionToAnswer == 1)
{

questionOne();

2) Write an if statement that performs the following logic: if the
variable sales is greater than 50,000, then assign 0.25 to the
commissionRate variable, and assign 250 to the bonus variable.

void questionTwo()
{
int sales = 0;
double commissionRate = 0;
int bonus = 0;
cout << "Please enter the sales amount for the year:
cin >> sales;
if(sales > 50000)

{

<< endl;

commissionRate = 0.25;
bonus = 250;

}

cout << "Your sales commission rate is: << commissionRate << endl;
cout << "Your bonus is: " << bonus << endl;

3) Accept two strings as input at the prompt/command line, such
as “Big” and “Apple.” Join or concatenate the two words with a
third word, such as “Ripe” and print the three words together with
the third word the middle, “Big Ripe Apple”.

string concatenate(string first, string second, string middle)

{

stringstream ss;

ss << first << " " << middle << " " << second;
string s = ss.str();
return s;

}

void questionThree()

{

string firstWord;

string secondWord;

string middleWord;

cout << "Please enter a word:" << endl;

cin >> firstWord;

cout << "Please enter a second word:" << endl;

cin >> secondWord;

cout << "Please enter a word to put in the middle:
cin >> middleWord;

string phrase = concatenate(firstWord, secondWord, middleWord);
cout << "Your final sentence is: " << phrase << endl;

<< endl;

Functions with variable length arguments

Example 1 : A function accepts variable arguments of known data-type
(A simple average function, that takes variable number of arguments)

Code: C++

finclude <stdio.h>
finclude <stdarg.h>

float avg(int Count, ...

va_list Numbers;
va_start Numbers, Count);
int Sum = 0;
int 1 = 0; 1 < Count; ++1i
Sum += va_arg (Numbers, int);
va_end (Numbers) ;
Sum/Count) ;

int main

float Average = avg (10, 0, 1, 2, 2, 4, , R
printf ("Average of first 10 whole numbers : %£f\n", Average);

-
-r

Output of the above code is :
Average of first 10 whole numbers : 4000000

Here is another example of variable argument function, which is a simple printing function:

void my printf(char *format, ...) {
va_list argptr;

va_start(argptr, format):;

while(*format != '\0') {

// string

if(*format == 's') {
char* s = va_arg(argptr, char *);
printf("Printing a string: %s\n", s):

}

// character

else if(*format == 'c') {
char ¢ = (char) va_arg(argptr, int);
printf("Printing a character: %c\n", c):
break:;

}

// integer

else if(*format == '4d') {
int d = va_arg(argptr, int);
printf("Printing an integer: 3d\n", d):

}

*format++;
}

va_end(argptr):;
}
int main(void) {
my printf("sdc", "This is a string", 29, 'X'):

return(0):

Printing a string: This is a string
Printing an integer: 29
Printing a character: X

4) Accept 5 integers on the command line, either all at once or separately. Save

these to an array, vector, or list. Print the integers in the range 2 through 4, leaving
off the first and the last. Bonus: Ask for the size of the array to be used, so it can be
5, 6, or 7 etc. Double Bonus: Allow a variable number of input numbers, stop input

using a stop character or command the letter “s” say, then print all the input integers
leaving off the first and the last.

void questionFour()

{

int dataStructChosen;
cout << "Welcome to store and retrieve numbers. Would you like to store numbers in 1) an array, 2) a vecto
cin >> dataStructChosen;
if(dataStructChosen == 1)
{
int size = 5;
do
{
cout << "What size array would you like to use? (select a size of 5 or greater ple
cin >> size;
} while(size < 5);
int *myArray = new int[size];
for(int i = 0; i <= size - 1; i++)

{

int number;

cout << "Please enter a number " << ":" << endl;

cin >> number;

myArray [i] = number;
}
cout << "Here are the values from position 2 to " << size - 1 << ": " << endl;
for(int j = 0; j < size - 2; j++)
{

cout << "The array value at position " << j+2 << " is: " << myArray[j+1] << endl;
¥

else if (dataStructChosen == 2)
{

int size = 5;
do
{
cout << "What size vector would you like to use? (select a size of 5 or greater please)" << endl;
cin >> size;
} while(size < 5);
vector<int> myVector;
for(int 1 = @; 1 <= size - 1; i++)

{

int number;

cout << "Please enter a number:" << endl;

cin >> number;

myVector.push_back(number);
}
cout << "Here are the values from position 2 to " << size - 1 << ":" << endl;
for(int j = 0; j < size - 2; j++)
{

cout << "The vector value at position " << j + 2 << " is: " << myVector[j+1] << endl;
}

else if (dataStructChosen == 3){

int size = 5;

do

{
cout << "What size list would you like to use? (select a size of 5 or greater please)" << €
cin >> size;

} while(size < 5);

list<int> myList;

for(int 1 = 0; i <= size - 1; i++)

{
int number;
cout << "Please enter a number:" << endl;
cin >> number;
myList.push_back(number);
}
cout << "Here are the values from position 2 to " << size - 1 << ":" << endl;
for(list<int>::iterator it=myList.begin(); it != myList.end(); it++)
{
if(it == mylList.begin())
{
continue;
}
if(next(it) == myList.end())
{
continue;
}
else
{
cout << "The list value at position is: " << (*it) << endl;
}
}

The ‘+’ operator can concatenate
strings, not strings and ints

int main() {

std::string a = "Hello ";
std::string b = "World";
std::string ¢ = a + b;

// std::string c = a +b + 3 + "4" + "hello"; // Doesn't work

// 23 IntelliSense: no operator "+" matches these operands
// operand types are: std::basic_string<char, std::char_traits<char>,
// std::allocator<char>> + int

cout << ¢ << endl;

int myInt = 3;

std::stringstream ss;

SS << a << b << myInt << 4 << "hello";
string newstring = ss.str();

cout << newstring << endl;

}

e 2) Objects, encapsulation, abstract data types,
data protection and scope

C++ Classes

e Classes are containers for state variables and provide operations,
i.e., methods, for manipulating the state variables

e A class is separated into three access control sections:

class Classic Example {

public:
// Data and methods accessible to any user of the class

protected:
// Data and methods accessible to class methods,

// derived classes, and friends only

private:
// Data and methods accessible to class

// methods and friends only

}:

Assignment and Initialization (cont’d)

class String {
public:

String (const char *t)
: len (t == 0 ? 0 : strlen (t)) {
if (this->len_ == 0)

throw range error ();

this->str = strcpy (new char [len + 1], t)
}

’

~“string (void) { delete [] this->str ; }
Y

private:
size t len ;
char *str ;

};

Assignment and Initialization (cont’d)

void foo (void) {
String sl ("hello");
String s2 ("world");

sl = s2; // leads to aliasing

sl[2] = "x’;

assert (s2[2] == 'x’); // will be true!
V7 S

// double deletion in destructor calls!

Assignment and Initialization (cont’d)

s1 s2

world

e Note that both s1.s and s2.s point to the dynamically allocated
buffer storing world (this is known as aliasing)

“Objects” and “Classes” ??

Place Building
PlaceType -name A, - || - Event
0..* | -describtion -describtion
-name -0'_,_,4—'-'—"'" -name
-category -star
+desaibtion 0..* -end
-describe
+newPlace() Ls? -price
Location
Dwell +invite()
— T -name +sellTicket() %
ActivityType -cenrter +Operation1() %
- -radius +start()
name +end()
-category
-describtion Eventiype
+newAdtivit il
A%0] at from -category
0..% - -desaribtion
<> Activity Organization
+newEvent()
-start -name
en:'m . -decription
-commen
+newEvent()
+end() +grantMembership()
+newActivity() +end()

Relationship
Crle

-startTime
-hame = -endTime
-type =———— -type
-desaription -comment
+addPerson() s

+change()

child

0::%
\ / 1 Membership

Person

-firstName
-lastName

-start
-end

-type

+newCirle()
+newRelationsp()
+noveHome()
+go()

+arrive()
+startAdtivity()

+applyMembership()

+end()

0..*

Participaste

-start
-end
-ticket
-price

-comment
-status

+arrive()
+leave()
+change()

Local and Global Variables

CONCEPT: A local variable is defined inside a function and is not accessible outside
the function. A global variable is defined outside all functions and is
accessible to all functions in its scope.

Local Variables

Variables defined inside a function are local to that function. They are hidden from the
statements in other functions, which normally cannot access them. Program 6-16 shows
that because the variables defined in a function are hidden, other functions may have sepa-

o0

int main()

o
10 int num = 1; // Local variable

11

2 cout << "In main, num is " << num << endl;

13 anotherFunction();

14 cout << "Back in main, num is " << num << endl;
15 return 0;

16)

18 //*******tt******t********************t******t*********

19 // Definition of anotherFunction *
20 // It has a local variable, num, whose initial value *
21 // is displayed. *

272 //***

23
24 wvoid anotherFunction()

25 {

26 int num = 20; // Local variable

27

28 cout << "In anotherFunction, num is " << num << endl;
29 %

Program Output

In main, num is 1
In anotherFunction, num is 20
Back in main, num is 1

Global Variables vs. Global Constants

* Global variables make debugging difficult. Any statement in a program can
change the value of a global variable. If you find that the wrong value is being
stored in a global variable, you have to track down every statement that accesses
it to determine where the bad value is coming from. In a program with thousands
of lines of code, this can be difficult.

* Functions that use global variables are usually dependent on those variables. If
you want to use such a function in a different program, most likely you will have
to redesign it so it does not rely on the global variable.

* Global variables make a program hard to understand. A global variable can be
modified by any statement in the program. If you are to understand any part of
the program that uses a global variable, you have to be aware of all the other
parts of the program that access the global variable.

Because of this, you should not use global variables for the conventional purposes of stor-
ing, manipulating, and retrieving data. In most cases, you should declare variables locally
and pass them as arguments to the functions that need to access them.

Global Constants

Although you should try to avoid the use of global variables, it is generally permissible to
use global constants in a program. A global constant is a named constant that is available
to every function in a program. Because a global constant’s value cannot be changed during
the program’s execution, you do not have to worry about the potential hazards that are
associated with the use of global variables.

Global constants are typically used to represent unchanging values that are needed
throughout a program. For example, suppose a banking program uses a named constant
to represent an interest rate. If the interest rate is used in several functions, it is easier to
create a global constant, rather than a local named constant in each function. This also
simplifies maintenance. If the interest rate changes, only the declaration of the global con-
stant has to be changed, instead of several local declarations.

6.3

SAY

Function Prototypes

CONCEPT: A function prototype eliminates the need to place a function definition
before all calls to the function.

Before the compiler encounters a call to a particular function, it must already know the
function’s return type, the number of parameters it uses, and the type of each parameter.
(You will learn how to use parameters in the next section.)

One way of ensuring that the compiler has this information is to place the function defini-
tion before all calls to that function. This was the approach taken in Programs 6-1, 6-2,
6-3, and 6-4. Another method is to declare the function with a function prototype. Here is
a prototype for the displayMessage function in Program 6-1:

void displayMessage();

The prototype looks similar to the function header, except there is a semicolon at the end.
The statement above tells the compiler that the function displayMessage has a void
return type (it doesn’t return a value) and uses no parameters.

NOTE: Function prototypes are also known as function declarations.

WARNING! You must place either the function definition or either/the function
prototype ahead of all calls to the function. Otherwise the program will not compile.

Function prototypes are usually placed near the top of a program so the compiler will
encounter them before any function calls. Program 6-5 is a modification of Program 6-3.
The definitions of the functions first and second have been placed after main, and a
function prototype has been placed after the using namespace std statement.

void deep()

{
— cout << "I am now inside the function deep. \n";
deeper();
B cout << "Now I am back in deep.\n";
}

void deeper()

L

cout << "I am now in the function deeper.\n";

int main()

{

cout << "I am starting in function main.\n";

deep() ;

> cout << "Back in function main again.\n";
return 0;

R
O VOO O WDh s W=

=
\ND

)

e
[« 2T S | B~ 0%]

J

N NN NDNDDNDDND -
AL WN - O WO~

~

w NN
O

o

w
—

AU W

w wwww

// This program has three functions: main, first, and second.
#include <iostream>
using namespace std;

// Function Prototypes
void first();

void second();

int main()

{
cout << "I am starting in function main. \n";
first(); // Call function first
second() ; // Call function second
cout << "Back in function main again. \n";
return 0;

}

//*************************************

// Definition of function first. *

// This function displays a message. *
/[¥ % 3 g e e e e e e g e e ek ok e e ok ke ok ok o ok o ok ok ok o ke ok

void first()

{

cout << "I am now inside the function first.\n";

//*************************************

// Definition of function second. *

// This function displays a message. *
//*************************************

void second()

{

cout << "I am now inside the function second. \n";

WARNING! When passing a variable as an argument, simply write the variable name
inside the parentheses of the function call. Do not write the data type of the argument
variable in the function call. For example, the following function call will cause an error:
displayValue(int x); // Error!

The function call should appear as

displayValue(x) ; // Correct

Default Arguments

CONCEPT: Default arguments are passed to parameters automatically if no argument
is provided in the function call.

It’s possible to assign default arguments to function parameters. A default argument is
passed to the parameter when the actual argument is left out of the function call. The
default arguments are usually listed in the function prototype. Here is an example:

void showArea(double = 20.0, double = 10.0);

Default arguments are literal values or constants with an = operator in front of them,
appearing after the data types listed in a function prototype. Since parameter names are
optional in function prototypes, the example prototype could also be declared as

void showArea(double length = 20.0, double width = 10.0);

In both example prototypes, the function showArea has two double parameters. The first
is assigned the default argument 20.0 and the second is assigned the default argument
10.0. Here is the definition of the function:

void showArea(double length, double width)

{
double area = length * width;

cout << "The area is " << area << endl;

}

The default argument for length is 20.0 and the default argument for width is 10.0.
Because both parameters have default arguments, they may optionally be omitted in the
function call, as shown here:

showArea();

When a function uses a mixture of parameters with and without default arguments, the
parameters with default arguments must be defined last. In the calcpay function, hours
could not have been defined before either of the other parameters. The following proto-
types are illegal:

// Illegal prototype
void calcPay(int empNum, double hours = 40.0, double payRate);

// Illegal prototype
void calcPay(double hours = 40.0, int empNum, double payRate);

Here is a summary of the important points about default arguments:

® The value of a default argument must be a literal value or a named constant.

® When an argument is left out of a function call (because it has a default value), all
the arguments that come after it must be left out too.

* When a function has a mixture of parameters both with and without default
arguments, the parameters with default arguments must be declared last.

Program 6-9

1 // This program demonstrates that changes to a function parameter
// have no effect on the original argument.

finclude <iostream>

using namespace std;

N

L= AN ¥ B~ PV

// Function Prototype
void changeMe(int);

o0

9 int main()

10 |
11 int number = 12;

12

13 // Display the value in number.

14 cout << "number is " << number << endl;

15

16 // Call changeMe, passing the wvalue in number

17 // as an argument.

18 changeMe(number) ;

19

20 // Display the value in number again.

21 cout << "Now back in main again, the value of ";

22 cout << "number is " << number << endl;

23 return 0;

24}

25

26 //tt**ttt******************ttt**ttt********************t**ttt**t
27 // Definition of function changeMe. *
28 // This function changes the value of the parameter myValue. *
2

O

//tt***tt******************ttt**ttt********************t**ttt**t

w

31 void changeMe(int myValue)

32 {

33 // Change the value of myValue to 0.

34 myValue = 0;

35

36 // Display the value in myValue.

37 cout << "Now the value is " << myValue << endl;
38)
Program Output
number is 12

Now the value is 0
Now back in main again, the value of number is 12

Using reference variable as
parameters

called a reference variable that, when used as a function parameter, allows access to the
original argument.

A reference variable is an alias for another variable. Any changes made to the reference
variable are actually performed on the variable for which it is an alias. By using a refer-
ence variable as a parameter, a function may change a variable that is defined in another
function.

Reference variables are defined like regular variables, except you place an ampersand (&)
in front of the name. For example, the following function definition makes the parameter
refVar a reference variable:

void doubleNum(int &refVar)
{

refvVar *= 2;

NOTE: The variable refvar is called “a reference to an int.”

This function doubles refvar by multiplying it by 2. Since refvar is a reference variable,
this action is actually performed on the variable that was passed to the function as an
argument. When prototyping a function with a reference variable, be sure to include the
ampersand after the data type. Here is the prototype for the doubleNum function:

void doubleNum(int &);

Program 6-25

1 // This program uses a reference variable as a function
2 // parameter.

3 #include <iostream>

4 using namespace std;

6 // Function prototype. The parameter is a reference variable.
void doubleNum(int &);

9 int main()

10 {

11 int value = 4;

12

13 cout << "In main, value is " << value << endl;

14 cout << "Now calling doubleNum..." << endl;

5 doubleNun value);

16 cout << "Now back in main. wvalue is " << wvalue << endl;
17 return 0;

18)

19

20 //****t**fi***********************tt**i*********************
21 // Definition of doubleNum *
22 // The parameter refVar is a reference variable. The value *
23 // in refvar is doubled. *

24 //**

26 void doubleNum (int &refVar)

27 4
28 refvar *= 2;
29)

Program Output

In main, value is 4
Now calling doubleNum..
Now back in main. value is 8

The parameter refVvar in Program 6-25 “points” to the value variable in function main.
When a program works with a reference variable, it is actually working with the variable
it references, or points to. This is illustrated in Figure 6-15.

Static Member Functions

You declare a static member function by placing the static keyword in the function’s
prototype. Here is the general form:

static ReturnType FunctionName (ParameterTypeList);

A function that is a static member of a class cannot access any nonstatic member data in its
class. With this limitation in mind, you might wonder what purpose static member functions
serve. The following two points are important for understanding their usefulness:

* Even though static member variables are declared in a class, they are acrually
defined ourtside the class declaration. The lifetime of a class’s static member vari-
able is the lifetime of the program. This means thart a class’s static member vari-
ables come into existence before any instances of the class are created.

® A class’s static member functions can be called before any instances of the class are
created. This means that a class’s static member functions can access the class’s
static member variables before any instances of the class are defined in memory.
This gives you the ability to create very specialized setup routines for class objects.

Contents of Budget. h (Version 2)

1 #ifndef BUDGET_?
#define BUDGET_H

N

= W

// Budget class declaration
class Budget

6 A

7 private:

8 static double corpBudget; // Static member variable

9 double divisionBudget; // Instance member variable
10 public:

11 Budget()

12 { divisionBudget = 0; }

14 void addBudget(double b)

15 { divisionBudget += b;

16 corpBudget += b; }

18 double getDivisionBudget() const

19 { return divisionBudget; }

20

21 double getCorpBudget() const

22 { return corpBudget; }

23

24 static void mainOffice(double); // Static member function
25)i

27 #endif

Contents of Budget. cpp

1 #include "Budget. h"

// Definition of corpBudget static member variable

= W

double Budget:: corpBudget = 0;
6 //**
! // Definition of static member function mainOffice. *
8 // This function adds the main office's budget request to *
9 // the corpBudget variable. *

10 //**

12 wvoid Budget:: mainOffice(double moffice)
134
14 corpBudget += moffice;

—

w N

(S I -

o))

// This program demonstrates a static member function.
$include <iostream>

$include <iomanip>

#include "Budget. h"

using namespace std;

int main()
{
int count; // Loop counter
double mainOfficeRequest; // Main office budget request

const int NUM DIVISIONS = 4; // Number of divisions

// Get the main office's budget request.

// Note that no instances of the Budget class have been defined.
cout << "Enter the main office's budget request: ";

cin >> mainOfficeRequest;

Budget:: mainOffice(mainOfficeRequest);

Budget divisions[NUM DIVISIONS]; // An array of Budget objects.

// Get the budget requests for each division.
for (count = 0; count < NUM DIVISIONS; count++)

{
double budgetAmount;
cout << "Enter the budget request for division ";
cout << (count + 1) << ": ";
cin >> budgetAmount;
divisions[count]. addBudget(budgetAmount) ;
}

// Display the budget requests and the corporate budget.
cout << fixed << showpoint << setprecision(2);
cout << "\nHere are the division budget requests:\n";
for (count = 0; count < NUM DIVISIONS; count++)
{

cout << "\tDivision " << (count + 1) << "\t$ ";

cout << divisions[count].getDivisionBudget() << endl;

}
cout << "\tTotal Budget Requests: \t$ ";

cout << divisions[0].getCorpBudget() << endl;

return 0;

Program Output with Example Input Shown in Bold

Enter the
Enter the
Enter the
Enter the
Enter the

main office's budget request: 100000 [Enter]
budget request for division 1: 100000 [Enter]
budget request for division 2: 200000 [Enter]
budget request for division 3: 300000 [Enter]
budget request for division 4: 400000 [Enter]

Here are the division budget requests:
Division 1 $ 100000.00
Division 2 $ 200000.00
Division 3 $ 300000.00
Division 4 $ 400000.00
Total Requests (including main office): $ 1100000.00

Notice in line 17 the statement that calls the static function mainoffice:
Budget:: mainOffice(amount);

Calls to static member functions do nort use the regular notation of connecting the function
name to an object name with the dot operator. Instead, static member functions are called
by connecting the function name to the class name with the scope resolution operator.

19.2 Iterators and Sequences [iter.iter]

An iterator is a pure abstraction. That is, anything that behaves like an iterator is an iterator
(§3.8.2). An iterator is an abstraction of the notion of a pointer to an element of a sequence. Its key
concepts are
“‘the element currently pointed to’” (dereferencing, represented by operators * and - >),

— “‘point to next element’’ (increment, represented by operator ++), and

— equality (represented by operator ==).
For example, the built-in type int* is an iterator for an int [] and the class list<int> : : iterator is an
iterator for a list class.

A sequence is an abstraction of the notion ‘‘something where we can get from the beginning to
the end by using a next-eclement operation:”’

beglin() end()
o] | — [demll]] — [Feml]] = [= | — [dem] _:‘fff&ffff

Examples of such sequences are arrays (§5.2), vectors (§16.3), singly-linked lists (§17.8[17]),
doubly-linked lists (§17.2.2), trees (§17.4.1), mput (§21.3.1), and output (§21.2.1). Each has its
own appropriate kind of iterator.

The iterator classes and functions are declared in namespace std and found in <iterator>.

An iterator is not a general pointer. Rather, it is an abstraction of the notion of a pointer into an
array. There is no concept of a “‘null iterator.”” The test to determine whether an iterator points to
an element or not is conventionally done by comparing it against the end of its sequence (rather
than comparing it against a null element). This notion simplifies many algorithms by removing the
need for a special end case and generalizes nicely to sequences of arbitrary types.

An iterator that points to an element 1s said to be valid and can be dereferenced (using *, [], or
-> appropriately). An iterator can be invalid either because it hasn’t been initialized, because it
pointed into a container that was explicitly or implicitly resized (§16.3.6, §16.3.8), because the con-
tainer into which it pointed was destroyed, or because it denotes the end of a sequence (§18.2). The
end of a sequence can be thought of as an iterator pointing to a hypothetical element position one-
past-the-last element of a sequence.

In Java, we refer to the fields and methods of a class. In C++, we use the
terms data members and member functions. Furthermore, in Java, every
method must be inside some class. In contrast, a C++ program can also
include free functions - functions that are not inside any class.

main () is a free function in C++

Friends of Classes

CONCEPT: A friend is a function or class that is not a member of a class, but has
access to the private members of the class.

Private members are hidden from all parts of the program outside the class, and accessing
them requires a call to a public member function. Sometimes you will want to create an
exception to that rule. A friend function is a function that is not part of a class, but that
has access to the class’s private members. In other words, a friend function is treated as if
it were a member of the class. A friend function can be a regular stand-alone function, or
it can be a member of another class. (In fact, an entire class can be declared a friend of
another class.)

In order for a function or class to become a friend of another class, it must be declared as
such by the class granting it access. Classes keep a “list” of their friends, and only the
external functions or classes whose names appear in the list are granted access. A function
is declared a friend by placing the key word £riend in front of a prototype of the func-
tion. Here is the general format:

friend ReturnType FunctionName (ParameterTypeList)

Friends

e Aclass may grant access to its private data and methods by including
friend declarations in the class definition, e.g.,

class Vector {
friend Vector &product (const Vector %,

const Matrix &);
private:
int size ;

// -
};

e Function product can access Vector's private parts:

Vector &product (const Vector &v, const Matrix &m) {
int vector size = v.size ;

Y

Static Methods

e A static method may be called on an object of a class, or on the class
itself without supplying an object (unlike non-static methods . . .)

e Note, there is no this pointer in a static method

Static Methods (cont’d)

e /.e., a static method cannot access non-static class data and
functions

class Foo {

public:
static int get sl (void) {
this->a = 10; /* ERROR! */; return Foo::s ;
}
int get s2 (void) {
this->a = 10; /* OK */; return Foo::s ;
}
private:
int a ;

static int s ;

}:

Operator Overloading

Binary operators can either be members of their left-hand argument's class or free functions. (Some
operators, like assignment, must be members.) Since the stream operator's left-hand argument is a

stream, they either have to be members of the stream class or free functions. The canonical way fo

implement operator<< for any type is this:

std::ostream& operator<<(std::ostream& os, const T& obj)
{

// stream obj's data into os

return os;

¥

Note that it is not a member function. Also note that it takes the object to stream per const reference.
That's because you don't want to copy the object in order to stream it and you don't want the streaming
to alter it either.

Sometimes you want to stream objects whose internals are not accessible through their class' public
interface, so the operator can't get at them. Then you have two choices: Either put a public member into
the class which does the streaming

class T {
public:
void stream_to(std::ostream&) {os << obj.data_;}
private:
int data_;

}s
and call that from the operator:

inline std::ostream& operator<<(std::ostream& os, const T& obj)

{
obj.stream_to(os);
return o0s;

}

nr make the nneratnr a frniand

Sometimes you want to stream objects whose internals are not accessible through their class' public
interface, so the operator can't get at them. Then you have two choices: Either put a public member into
the class which does the streaming

class T {
public:
void stream_to(std::ostream&) {os << obj.data_;}
private:
int data_;

e
and call that from the operator:

inline std::ostream& operator<<(std::ostream& os, const T& obj)

{

obj.stream_to(os);
return os;

}

or make the operatora friend

class T {
public:
friend std::ostream& operator<<(std::ostream&, const T&);
private:
int data_;

}s
so that it can access the class' private pans:

inline std::ostream& operator<<(std::ostream& os, const T& obj)

{

0s << obj.data_;
return os;

UJJ.IIB IIGIIICJPQ\-C S LUy

class Paragraph

{

s
std:
{

}
int

{

public:
Paragraph(std::string const& init)
:m_para(init)

1}
std::string const& to_str() const
{
return m_para;
}
bool operator==(Paragraph const& rhs) const
{
return m_para == rhs.m_para;
}
bool operator!=(Paragraph const& rhs) const
{
// Define != operator in terms of the == operator
return !(this->operator==(rhs));
}
bool operator<(Paragraph const& rhs) const
{
return m_para < rhs.m_para;
}
private:
friend std::ostream & operator<<(std::ostream &os, const Paragraph& p);
std::string m_para;

:ostream & operator<<(std::ostream &os, const Paragraph& p)

return os << p.to_str();

main() S ./Paragraph.exe

Paragraph p(“My Paragraph"); My Paragraph

Paragraph q(p); 1
std::cout << p << std::endl << (p == q) << std::endl;

